Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Khoảng cách từ điểm \(M(3; - 1)\) đến đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x =

Câu hỏi số 628258:
Thông hiểu

Khoảng cách từ điểm \(M(3; - 1)\) đến đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + t}\\{y = 1 + 2t}\end{array}} \right.\) nằm trong khoảng nào sau đây?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:628258
Phương pháp giải

Đưa phương trình đường thẳng về dạng phương trình tổng quát.

Khoảng cách từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(\Delta :\,\,ax + by + c = 0\) là: \(d\left( {M,\Delta } \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Giải chi tiết

Phươmg trình tổng quát đường thẳng \(\Delta \) là \(2x - y + 5 = 0\).

Khoảng cách từ điểm \(M\) đến đường thẳng \(\Delta \) là \(\dfrac{{|2.3 - ( - 1) + 5|}}{{\sqrt {{2^2} + {{( - 1)}^2}} }} = \dfrac{{12\sqrt 5 }}{5} \approx 5,4\).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com