Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho phương trình bậc hai \({x^2} - 2x + m - 2 = 0\) (1), với \(m\) là tham số.a) Xác định các hệ số

Câu hỏi số 638591:
Thông hiểu

Cho phương trình bậc hai \({x^2} - 2x + m - 2 = 0\) (1), với \(m\) là tham số.

a) Xác định các hệ số a, b, c của phương trình (1).

b) Giải phương trình (1)  khi \(m =  - 1\).

c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(3\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2 = 11\).

Quảng cáo

Câu hỏi:638591
Phương pháp giải

a) Hệ số a, b, c của phương trình là các hệ số của số hạng \({x^2},x\)và hệ số tự do

b) Thay m = -1 vào phương trình, giải phương trình bằng cách nhẩm nghiệm

c) Tính \(\Delta '\). Cho \(\Delta ' > 0\) tìm m, áp dụng Viet thay vào \(3\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2 = 11\)

Giải chi tiết

a) Xác định các hệ số a, b, c của phương trình (1).

Hệ số \(a = 1;\,\,b =  - 2;\,\,c = m - 2.\)

b) Giải phương trình (1)  khi \(m =  - 1\).

Khi \(m =  - 1\) phương trình (1)  \( \Leftrightarrow {x^2} - 2x - 3 = 0\).

Ta có \(a - b + c = 1 - \left( { - 2} \right) + \left( { - 3} \right) = 0\) nên phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} =  - 1\\{x_2} =  - \frac{c}{a} = 3\end{array} \right.\).

Vậy khi m = -1 thì tập nghiệm của phương trình là \(S = \left\{ { - 1;3} \right\}\).

c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(3\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2 = 11\).

Phương trình (1) có  \(\Delta ' = {\left( { - 1} \right)^2} - 1\left( {m - 2} \right) =  - m + 3\).

Để phương trình có hai nghiệm thì \(\Delta ' \ge 0 \Leftrightarrow  - m + 3 \ge 0 \Leftrightarrow m \le 3\)

Áp dụng định lí Vi – ét ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = m - 2}\end{array}} \right.\)

Theo bài ra ta có: \(3\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2 = 11\)

\( \Leftrightarrow 3\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}.{x_2}} \right] + x_1^2x_2^2 = 11\)(2)

Thay \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = m - 2}\end{array}} \right.\) vào (2) ta có:

\(\begin{array}{l} \Leftrightarrow 3\left[ {{2^2} - 2\left( {m - 2} \right)} \right] + {\left( {m - 2} \right)^2} = 11\\ \Leftrightarrow 3\left( {8 - 2m} \right) + {m^2} - 4m + 4 = 11\\ \Leftrightarrow {m^2} - 10m + 17 = 0\,\,\left( * \right)\end{array}\)

Ta có: \({\Delta _m}' = {5^2} - 17 = 8 > 0\) nên phương trình (*) có hai nghiệm phân biệt \(\left[ \begin{array}{l}m = 5 + 2\sqrt 2 \,\,\,\left( {ktm} \right)\\m = 5 - 2\sqrt 2 \,\,\,\left( {tm} \right)\end{array} \right.\)

Vậy với \(m = 5 - 2\sqrt 2 \,\) phương trình (1) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(3\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2 = 11\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com