Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với AB tại H
Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với AB tại H (H thuộc đoạn OA, khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O), N là giao điểm của hai đường thẳng BE và CD.
a) Chứng minh tứ giác MEBH nội tiếp
b) Chứng minh NC. ND = NB. NE
c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất
Quảng cáo
a) Tổng hai góc đối bằng \({180^0}\)
b) Chứng minh \(\Delta NCE \sim \Delta NBD\left( {g.g} \right)\)
c) Gọi \(HM = x\,\,\left( {0 < x < R} \right)\). Tính AE, AM theo x và áp dụng bất đẳng thức Cô-si
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











