Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với AB tại H

Câu hỏi số 638592:
Vận dụng

Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với AB tại H (H thuộc đoạn OA, khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O), N là giao điểm của hai đường thẳng BE và CD.

a) Chứng minh tứ giác MEBH nội tiếp

b) Chứng minh NC. ND = NB. NE

c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất

Quảng cáo

Câu hỏi:638592
Phương pháp giải

a) Tổng hai góc đối bằng \({180^0}\)

b) Chứng minh \(\Delta NCE \sim \Delta NBD\left( {g.g} \right)\)

c) Gọi \(HM = x\,\,\left( {0 < x < R} \right)\). Tính AE, AM theo x và áp dụng bất đẳng thức Cô-si

Giải chi tiết

a) Chứng minh tứ giác MEBH nội tiếp

Ta có \(\angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

        \(\angle MHB = {90^0}\) (do \(CD \bot AB\) tại H) (gt)

\( \Rightarrow \angle MEB + \angle MHB = {90^0} + {90^0} = {180^0}\).

Mà 2 góc này ở vị trí đối diện nên tứ giác MEBH nội tiếp (dhnb)

b) Chứng minh NC. ND = NB. NE

Xét \(\Delta NCE\) và \(\Delta NBD\) có:

\(\angle BNC\) chung

\(\angle NCE = \angle NBD\) (góc nội tiếp cùng chắn cung DE)

\( \Rightarrow \Delta NCE \sim \Delta NBD\left( {g.g} \right)\)

\( \Rightarrow \frac{{NC}}{{NB}} = \frac{{NE}}{{ND}} \Leftrightarrow NC.ND = NE.NB\) (đpcm)

c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất

Xét tam giác OAC có OA = OC = AC = R => Tam giác OAC đều.

\( \Rightarrow \) Đường cao CH đồng thời là đường trung tuyến \( \Rightarrow H\) là trung điểm của OA \( \Rightarrow AH = \frac{1}{2}OA = \frac{R}{2}\).

Đặt \(HM = x\,\,\left( {0 < x < R} \right)\).

Áp dụng định lí Pytago trong tam giác vuông AHM ta có: \[AM = \sqrt {\frac{{{R^2}}}{4} + {x^2}}  \Rightarrow 2AM = \sqrt {{R^2} + 4{x^2}} \].

Xét tam giác AHM và tam giác AEB có:

\(\begin{array}{l}\angle BAE\,\,chung\\\angle AHM = \angle AEB = {90^0}\,\,\left( {cmt} \right)\end{array}\)

\[ \Rightarrow \Delta AHM \sim \Delta AEB\,\,\left( {g.g} \right)\]

\[ \Rightarrow \frac{{HM}}{{BE}} = \frac{{AH}}{{AE}} = \frac{{AM}}{{AB}}\] (các cặp cạnh tương ứng tỉ lệ).

\[ \Rightarrow AE = \frac{{AH.AB}}{{AM}} = \frac{{\frac{R}{2}.2R}}{{\sqrt {\frac{{{R^2}}}{4} + {x^2}} }} = \frac{{2{R^2}}}{{\sqrt {{R^2} + 4{x^2}} }}\]

\( \Rightarrow 2AM + AE = \sqrt {{R^2} + 4{x^2}}  + \frac{{2{R^2}}}{{\sqrt {{R^2} + 4{x^2}} }}\)

Áp dụng BĐT Cô-si ta có:

\(\sqrt {{R^2} + 4{x^2}}  + \frac{{2{R^2}}}{{\sqrt {{R^2} + 4{x^2}} }} \ge 2\sqrt {\sqrt {{R^2} + 4{x^2}} .\frac{{2{R^2}}}{{\sqrt {{R^2} + 4{x^2}} }}}  = 2\sqrt 2 R\)

Dấu “=” xảy ra

\(\begin{array}{l} \Leftrightarrow \sqrt {{R^2} + 4{x^2}}  = \frac{{2{R^2}}}{{\sqrt {{R^2} + 4{x^2}} }}\\ \Leftrightarrow {R^2} + 4{x^2} = 2{R^2} \Leftrightarrow {x^2} = \frac{{{R^2}}}{4} \Leftrightarrow x = \frac{R}{2}\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow HM = \frac{R}{2} \Rightarrow M\) là trung điểm của HD.

Vậy để 2AM + AE đạt giá trị nhỏ nhất thì M là trung điểm của HD.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com