Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 1}}{2}\) và

Câu hỏi số 638874:
Vận dụng

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 2}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 1}}{2}\) và hai điểm A(-1;2;1) và B(0;-1;2). Gọi (P) là mặt phẳng song song với đường thẳng AB và đường thẳng d. Viết phương trình mặt phẳng (P) biết khoảng cách giữa d và (P) bằng \(\sqrt 2 \) và (P) cắt Ox tại điểm có hoành độ dương.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:638874
Phương pháp giải

Tìm điểm M thuộc d và 1 VTCP \(\overrightarrow u \) của đường thẳng d.

Vì \(\left\{ \begin{array}{l}\left( P \right)//AB\\\left( P \right)//d\end{array} \right. \Rightarrow \overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow u } \right]\). Suy ra dạng phương trình mặt phẳng (P) theo D.

Giải phương trình \(d\left( {M,\left( P \right)} \right) = \sqrt 2 \) tìm D, chú ý điều kiện (P) cắt Ox tại điểm có hoành độ dương.

Giải chi tiết

Ta có: đường thẳng d đi qua M(2;1;1) và có VTCP \(\vec u(2;1;2)\).

Ta có: \(\overrightarrow {AB}  = \left( {1; - 3;1} \right)\).

Vì \(\left\{ \begin{array}{l}\left( P \right)//AB\\\left( P \right)//d\end{array} \right. \Rightarrow \overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow u } \right] = \left( { - 7;0;7} \right) =  - 7\left( {1;0; - 1} \right)\).

Chọn \({\vec n_{(P)}} = (1;0; - 1)\). Khi đó phương trình mặt phẳng (P) có dạng: \(\left( P \right):x - z + D = 0\).

Vì (P) cắt Ox tại điểm có hoành độ dương nên D < 0.

Vì d song song với (P) nên \(d(d,(P)) = d(M,(P)) = \dfrac{{|1 + D|}}{{\sqrt 2 }}\).

Theo giả thiết, ta có \(\dfrac{{\left| {1 + D} \right|}}{{\sqrt 2 }} = \sqrt 2  \Leftrightarrow \left| {1 + D} \right| = 2 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{D = 1\,\,\,\,\left( {Ktm} \right)}\\{D =  - 3\,\,\left( {tm} \right)}\end{array}} \right.\).

Vậy phương trình \((P):x - z - 3 = 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com