Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

1. Giải phương trình \({x^2} - 3x + 2 = 0\).2. Cho phương trình \({x^2} - 2mx - {m^2} - 2 = 0\) ( \(m\) là

Câu hỏi số 657094:
Nhận biết

1. Giải phương trình \({x^2} - 3x + 2 = 0\).

2. Cho phương trình \({x^2} - 2mx - {m^2} - 2 = 0\) ( \(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm \({x_1},{x_2}\) (với \({x_1} < {x_2}\) ) thỏa mãn hệ thức \({x_2} - 2\left| {{x_1}} \right| - 3{x_1}{x_2} = 3{m^2} + 3m + 4\).  

Quảng cáo

Câu hỏi:657094
Phương pháp giải

1. Bước 1: Tính giá trính của \(\Delta \) với \(\Delta {\rm{ \;}} = {{\rm{b}}^2} - 4{\rm{ac}}\)

Bước 2: Xét tập nghiệm của phương trình bằng việc sánh giá \(\Delta \) với 0

\(\Delta {\rm{ \;}} < 0 \Rightarrow \) phương trình bậc 2 vô nghiệm

\(\Delta {\rm{ \;}} = 0 \Rightarrow \) phương trình bậc 2 có nghiệm kép \({x_1} = {x_2} = {\rm{ \;}} - \dfrac{b}{{2a}}\)

\(\Delta {\rm{ \;}} > 0 \Rightarrow \) phương trình (1) có 2 nghiệm phân biệt, ta dùng công thức nghiệm sau: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}\).

2. Sử dụng Vi et.

Giải chi tiết

1. Giải phương trình \({x^2} - 3x + 2 = 0\).

Xét  phương trình \({x^2} - 3x + 2 = 0\) có \(a + b + c = 0\) nên ta có phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 1\\{x_2} = \dfrac{c}{a} = 2\end{array} \right.\)

Vậy phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = 1\\{x_2} = 2\end{array} \right.\).

2. Cho phương trình \({x^2} - 2mx - {m^2} - 2 = 0\) ( \(m\) là tham số). Tìm các giá trị của \(m\) để phương trình có hai nghiệm \({x_1},{x_2}\) (với \({x_1} < {x_2}\) ) thỏa mãn hệ thức \({x_2} - 2\left| {{x_1}} \right| - 3{x_1}{x_2} = 3{m^2} + 3m + 4\).  

Xét phương trình \({x^2} - 2mx - {m^2} - 2 = 0\) có \(\Delta ' = {\left( { - m} \right)^2} - 1.\left( { - {m^2} - 2} \right) = {m^2} + {m^2} + 2 = 2{m^2} + 2 > 0\) với mọi m.

Áp dụng định lí Vi – ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} =  - {m^2} - 2\end{array} \right.\) . (2)

Nhận thấy \({x_1}{x_2} =  - {m^2} - 2 < 0\) với mọi m nên phương trình có hai nghiệm trái dấu \({x_1} < 0 < {x_2}\).

\(\begin{array}{l}{x_2} - 2\left| {{x_1}} \right| - 3{x_1}{x_2} = 3{m^2} + 3m + 4\\ \Leftrightarrow {x_2} + 2{x_1} - 3{x_1}{x_2} = 3{m^2} + 3m + 4\\ \Leftrightarrow 2{x_1} + {x_2} - 3\left( { - {m^2} - 2} \right) = 3{m^2} + 3m + 4\\ \Leftrightarrow 2{x_1} + {x_2} + 3{m^2} + 6 = 3{m^2} + 3m + 4\\ \Leftrightarrow 2{x_1} + {x_2} = 3m - 2\end{array}\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\2{x_1} + {x_2} = 3m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - 2\\{x_2} = 2m - m + 2 = m + 2\end{array} \right.\)

Thay vào \({x_1}{x_2} =  - {m^2} - 2\) ta được phương trình

\(\begin{array}{l}\left( {m - 2} \right)\left( {m + 2} \right) =  - {m^2} - 2\\ \Leftrightarrow {m^2} - 4 =  - {m^2} - 2\\ \Leftrightarrow 2{m^2} = 2\end{array}\)

\(\begin{array}{l} \Leftrightarrow {m^2} = 1\\ \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 1\end{array} \right.\end{array}\)

Vậy \(\left[ \begin{array}{l}m = 1\\m =  - 1\end{array} \right.\) thỏa mãn yêu cầu bài toán.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com