Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bài toán bằng cách lập phương trình: Một phòng họp ban đầu có 96 ghế được xếp thành

Câu hỏi số 659570:
Vận dụng

Giải bài toán bằng cách lập phương trình:

Một phòng họp ban đầu có 96 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải cất bớt 2 dãy ghế và mỗi dãy còn lại xếp thêm 1 ghế (số ghế trong các dãy vẫn bằng nhau) để vừa đủ chỗ ngồi cho 110 đại biểu. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế?

Quảng cáo

Câu hỏi:659570
Phương pháp giải

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.

Giải chi tiết

Gọi x là số dãy ghế ban đầu. \(\left( {x > 2,x \in {N^*}} \right)\).

Sau khi cất đi 2 dãy ghế, số dãy ghế còn lại là: \(x - 2\) (dãy).

Số ghế ở mỗi hàng lúc ban đầu là \(\dfrac{{96}}{x}\) (ghế).

Số ghế ở mỗi hàng sau khi bỏ bớt hai dãy là \(\dfrac{{110}}{{x - 2}}\) (ghế).

Vì khi cất bớt 2 dãy ghế và mỗi dãy còn lại xếp thêm 1 ghế nên ta có phương trình:

\(\begin{array}{l}\dfrac{{110}}{{x - 2}} - \dfrac{{96}}{x} = 1\\ \Leftrightarrow \dfrac{{110x}}{{\left( {x - 2} \right)x}} - \dfrac{{96\left( {x - 2} \right)}}{{\left( {x - 2} \right)x}} = 1\\ \Leftrightarrow \dfrac{{110x - 96\left( {x - 2} \right)}}{{\left( {x - 2} \right)x}} = 1\\ \Leftrightarrow \dfrac{{110x - 96x + 192}}{{\left( {x - 2} \right)x}} = 1\\ \Leftrightarrow \dfrac{{14x + 192}}{{\left( {x - 2} \right)x}} = 1\\ \Leftrightarrow 14x + 192 = {x^2} - 2x\\ \Leftrightarrow {x^2} - 16x - 192 = 0\\ \Leftrightarrow \left( {x - 24} \right)\left( {x + 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 24\left( {tm} \right)\\x =  - 8\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy số dãy ghế lúc đầu là 24 dãy ghế.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com