Cho hình thang \(ABCD(AB//CD)\) có \(AB = 4\;{\rm{cm}},CD = 6\;{\rm{cm}}\). Đường thẳng \(d\) song song với
Cho hình thang \(ABCD(AB//CD)\) có \(AB = 4\;{\rm{cm}},CD = 6\;{\rm{cm}}\). Đường thẳng \(d\) song song với hai đáy và cắt hai cạnh bên AD, BC của hình thang đó lần lượt tại M, N; cắt đường chéo AC tại \(P\).
a) Chứng minh \(\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}}\);
b) Tính độ dài các đoạn thẳng MP, PN, MN; biết rằng \(MD = 2MA\).
Quảng cáo
a) Sử dụng định lí Thales, chứng minh bắc cầu: \(\dfrac{{AM}}{{MD}} = \dfrac{{AP}}{{PC}}\); \(\dfrac{{BN}}{{NC}} = \dfrac{{AP}}{{PC}}\)
b) Sử dụng hệ quả định lí Thales.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











