Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + 4m = 0\) (1), với \(m\) là tham số. a) Giải phương
Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + 4m = 0\) (1), với \(m\) là tham số.
a) Giải phương trình (1) khi \(m = 2\).
b) Tìm \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(\left| {{x_1}} \right| - \left| {{x_2}} \right| = - 4\).
Quảng cáo
a) Giải phương trình bậc hai một ẩn bằng công thức nghiệm \(\Delta ' = {(b')^2} - ac\) với \(b' = \dfrac{b}{2}\)
Khi đó phương trình có nghiệm \(\left[ \begin{array}{l}{x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\\{x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\end{array} \right.\)
b) Tìm nghiệm của phương trình theo m.
Sau đó thay vào biểu thức (2 trường hợp vì vai trò của \({x_1},{x_2}\) là như nhau)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










