Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hai số thực dương a và b thoả mãn \(a + b \le 2\).

Chứng minh: \(\dfrac{{{a^2}}}{{{a^2} + b}} + \dfrac{{{b^2}}}{{{b^2} + a}} \le 1\)

Câu 672342: Cho hai số thực dương a và b thoả mãn \(a + b \le 2\).


Chứng minh: \(\dfrac{{{a^2}}}{{{a^2} + b}} + \dfrac{{{b^2}}}{{{b^2} + a}} \le 1\)

Câu hỏi : 672342

Quảng cáo

Phương pháp giải:

Sử dụng BĐT cộng mẫu số.

  • (0) bình luận (0) lời giải
    ** Viết lời giải để bạn bè cùng tham khảo ngay tại đây

    Giải chi tiết:

    Ta có:

    \(\dfrac{{{a^2}}}{{{a^2} + b}} = \dfrac{{{a^2} + b - b}}{{{a^2} + b}} = 1 - \dfrac{b}{{{a^2} + b}}\)

    \(\dfrac{{{b^2}}}{{{b^2} + a}} = \dfrac{{{b^2} + a - a}}{{{b^2} + a}} = 1 - \dfrac{a}{{{b^2} + a}}\)

    \( \Rightarrow \dfrac{{{a^2}}}{{{a^2} + b}} + \dfrac{{{b^2}}}{{{b^2} + a}} = 1 - \dfrac{b}{{{a^2} + b}} + 1 - \dfrac{a}{{{b^2} + a}} = 2 - \left( {\dfrac{a}{{{b^2} + a}} + \dfrac{b}{{{a^2} + b}}} \right)\)

    Ta lại có:  \(\dfrac{a}{{{b^2} + a}} + \dfrac{b}{{{a^2} + b}} = \dfrac{{{a^2}}}{{a{b^2} + {a^2}}} + \dfrac{{{b^2}}}{{{a^2}b + {b^2}}}\)

    \(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \ge \dfrac{{{{(a + b)}^2}}}{{a{b^2} + {a^2} + {a^2}b + {b^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{{{(a + b)}^2}}}{{ab\left( {a + b} \right) + {a^2} + {b^2}}}\end{array}\) (BĐT cộng mẫu)

    Theo giả thiết có:

    \(a + b \le 2 \Rightarrow \dfrac{{{{(a + b)}^2}}}{{ab\left( {a + b} \right) + {a^2} + {b^2}}} \ge \dfrac{{{{(a + b)}^2}}}{{2ab + {a^2} + {b^2}}} = \dfrac{{{{(a + b)}^2}}}{{{{(a + b)}^2}}} = 1\).

    Từ đó ta có được: .

    Dấu "=" xảy ra khi \(a = b = 1\).

     

     

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com, cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com