Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Tổng các giá trị của a
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Tổng các giá trị của a để giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;2} \right]\) bằng 7 là:
Đáp án đúng là: C
Quảng cáo
Xét hàm số \(g\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\), tìm GTNN, GTLN của hàm số g(x) trên [0;2].
Sử dụng \(\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = \mathop {\min }\limits_{\left[ {0;2} \right]} \left| {g\left( x \right)} \right| = \left\{ {\left| {\mathop {\min }\limits_{\left[ {0;2} \right]} g\left( x \right)} \right|;\left| {\mathop {\max }\limits_{\left[ {0;2} \right]} g\left( x \right)} \right|} \right\}\).
Đặt \(g\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\). Xét hàm số \(g\left( x \right)\) trên \(\left[ {0;2} \right]\) ta có:
\(g'\left( x \right) = 4{x^3} - 12{x^2} + 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\\x = 2 \in \left[ {0;2} \right]\end{array} \right.\)
Ta có: \(g\left( 0 \right) = a,\,\,g\left( 1 \right) = a + 1,\,\,g\left( 2 \right) = a\)
\( \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} g\left( x \right) = a,\,\,\mathop {\max }\limits_{\left[ {0;2} \right]} g\left( x \right) = a + 2\)
\( \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = \mathop {\min }\limits_{\left[ {0;2} \right]} \left| {g\left( x \right)} \right| = \left\{ {\left| a \right|;\left| {a + 1} \right|} \right\}\).
TH1:
\(\begin{array}{l}\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| a \right|\\\left| a \right| \le \left| {a + 1} \right|\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| a \right| = 7\\{a^2} \le {\left( {a + 1} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = \pm 7\\{a^2} \le {a^2} + 2a + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \pm 7\\a \ge - \dfrac{1}{2}\end{array} \right. \Leftrightarrow a = 7\end{array}\)
TH2:
\(\begin{array}{l}\;\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {0;2} \right]} f\left( x \right) = \left| {a + 1} \right|\\\left| {a + 1} \right| \le a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {a + 1} \right| = 7\\{\left( {a + 1} \right)^2} \le {a^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a + 1 = 7\\a + 1 = - 7\end{array} \right.\\{a^2} + 2a + 1 \le {a^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a = 6\\a = - 8\end{array} \right.\\a \le - \dfrac{1}{2}\end{array} \right. \Leftrightarrow a = - 8\end{array}\).
Vậy tổng các giá trị của a thoả mãn bằng -1.
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn

-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com