Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC.
Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Điểm P trên cạnh CD sao cho \(PD = 2CP\). Mặt phẳng (MNP) cắt AD tại Q. Thể tích khối đa diện BMNPQD bằng
Đáp án đúng là: D
Quảng cáo
Xác định điểm Q, sử dụng: “Hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó”.
Phân tích \({V_{BMNPQD}} = {V_{ABCD}} - \left( {{V_{C.MNP}} + {V_{M.ACPQ}}} \right)\).
Lần lượt tính \({V_{C.MNP}},\,\,{V_{M.ACPQ}}\) theo \({V_{ABCD}}\).
Sử dụng công thức tính nhanh thể tích khối tứ diện đều cạnh a: \(V = \dfrac{{{a^3}\sqrt 3 }}{{12}}\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













