Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC.

Câu hỏi số 673334:
Vận dụng

Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Điểm P trên cạnh CD sao cho \(PD = 2CP\). Mặt phẳng (MNP) cắt AD tại Q. Thể tích khối đa diện BMNPQD bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:673334
Phương pháp giải

Xác định điểm Q, sử dụng: “Hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó”.

Phân tích \({V_{BMNPQD}} = {V_{ABCD}} - \left( {{V_{C.MNP}} + {V_{M.ACPQ}}} \right)\).

Lần lượt tính \({V_{C.MNP}},\,\,{V_{M.ACPQ}}\) theo \({V_{ABCD}}\).

Sử dụng công thức tính nhanh thể tích khối tứ diện đều cạnh a: \(V = \dfrac{{{a^3}\sqrt 3 }}{{12}}\).

Giải chi tiết

Xét (MNP) và (ACD) có P chung, MN // AC.

\( \Rightarrow \) Giao tuyến của (MNP) và (ACD) là đường thẳng qua P và song song với AC.

\( \Rightarrow \) Qua P kẻ đường thẳng song song với AC cắt AD tại Q.

Ta có: \({V_{BMNPQD}} = {V_{ABCD}} - \left( {{V_{C.MNP}} + {V_{M.ACPQ}}} \right)\).

Ta có:

\(\begin{array}{l} + )\,\,\dfrac{{{V_{C.MNP}}}}{{{V_{C.MBD}}}} = \dfrac{{CN}}{{CB}}.\dfrac{{CP}}{{CD}} = \dfrac{1}{2}.\dfrac{1}{3} = \dfrac{1}{6}\\ \Rightarrow {V_{C.MNP}} = \dfrac{1}{6}{V_{C.MBD}}\\\left\{ \begin{array}{l}{V_{C.MBD}} = {V_{B.MCD}}\\\dfrac{{{V_{B.MCD}}}}{{{V_{B.ACD}}}} = \dfrac{{BM}}{{BA}} = \dfrac{1}{2}\end{array} \right. \Rightarrow {V_{C.MBD}} = \dfrac{1}{2}{V_{B.ACD}} = \dfrac{1}{2}{V_{ABCD}}\\ \Rightarrow {V_{C.MNP}} = \dfrac{1}{6}.\dfrac{1}{2}{V_{ABCD}} = \dfrac{1}{{12}}{V_{ABCD}}\end{array}\)

\(\begin{array}{l} + )\,\,\dfrac{{{V_{M.ACPQ}}}}{{{V_{B.ACPQ}}}} = \dfrac{{MA}}{{BA}} = \dfrac{1}{2}\\\dfrac{{{V_{B.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{{{S_{ACPQ}}}}{{{S_{ACD}}}} = 1 - \dfrac{{{S_{PQD}}}}{{{S_{ACD}}}} = 1 - \dfrac{2}{3}.\dfrac{2}{3} = \dfrac{5}{9}\\ \Rightarrow \dfrac{{{V_{B.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{5}{9}\\ \Rightarrow \dfrac{{{V_{M.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{1}{2}.\dfrac{5}{9} = \dfrac{5}{{18}}\\ \Rightarrow {V_{M.ACPQ}} = \dfrac{5}{{18}}{V_{B.ACD}} = \dfrac{5}{{18}}{V_{ABCD}}\end{array}\)

\( \Rightarrow {V_{BMNPQD}} = {V_{ABCD}} - \left( {\dfrac{1}{{12}}{V_{ABCD}} + \dfrac{5}{{18}}{V_{ABCD}}} \right) = \dfrac{{23}}{{36}}{V_{ABCD}}\).

Vì ABCD là tứ diện đều cạnh 1 nên \({V_{ABCD}} = \dfrac{{\sqrt 3 }}{{12}}\).

Vậy \({V_{BMNPQD}} = \dfrac{{23}}{{36}}.\dfrac{{\sqrt 3 }}{{12}} = \dfrac{{23\sqrt 3 }}{{432}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com