Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Điểm P trên cạnh CD sao cho \(PD = 2CP\). Mặt phẳng (MNP) cắt AD tại Q. Thể tích khối đa diện BMNPQD bằng

Câu 673334: Cho tứ diện ABCD đều có cạnh bằng 1. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Điểm P trên cạnh CD sao cho \(PD = 2CP\). Mặt phẳng (MNP) cắt AD tại Q. Thể tích khối đa diện BMNPQD bằng

A. \(\dfrac{{\sqrt 2 }}{{48}}\).

B. \(\dfrac{{\sqrt 2 }}{6}\).

C. \(\dfrac{{25\sqrt 2 }}{{432}}\).

D. \(\dfrac{{23\sqrt 2 }}{{432}}\).

Câu hỏi : 673334
Phương pháp giải:

Xác định điểm Q, sử dụng: “Hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó”.

Phân tích \({V_{BMNPQD}} = {V_{ABCD}} - \left( {{V_{C.MNP}} + {V_{M.ACPQ}}} \right)\).

Lần lượt tính \({V_{C.MNP}},\,\,{V_{M.ACPQ}}\) theo \({V_{ABCD}}\).

Sử dụng công thức tính nhanh thể tích khối tứ diện đều cạnh a: \(V = \dfrac{{{a^3}\sqrt 3 }}{{12}}\).

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Xét (MNP) và (ACD) có P chung, MN // AC.

    \( \Rightarrow \) Giao tuyến của (MNP) và (ACD) là đường thẳng qua P và song song với AC.

    \( \Rightarrow \) Qua P kẻ đường thẳng song song với AC cắt AD tại Q.

    Ta có: \({V_{BMNPQD}} = {V_{ABCD}} - \left( {{V_{C.MNP}} + {V_{M.ACPQ}}} \right)\).

    Ta có:

    \(\begin{array}{l} + )\,\,\dfrac{{{V_{C.MNP}}}}{{{V_{C.MBD}}}} = \dfrac{{CN}}{{CB}}.\dfrac{{CP}}{{CD}} = \dfrac{1}{2}.\dfrac{1}{3} = \dfrac{1}{6}\\ \Rightarrow {V_{C.MNP}} = \dfrac{1}{6}{V_{C.MBD}}\\\left\{ \begin{array}{l}{V_{C.MBD}} = {V_{B.MCD}}\\\dfrac{{{V_{B.MCD}}}}{{{V_{B.ACD}}}} = \dfrac{{BM}}{{BA}} = \dfrac{1}{2}\end{array} \right. \Rightarrow {V_{C.MBD}} = \dfrac{1}{2}{V_{B.ACD}} = \dfrac{1}{2}{V_{ABCD}}\\ \Rightarrow {V_{C.MNP}} = \dfrac{1}{6}.\dfrac{1}{2}{V_{ABCD}} = \dfrac{1}{{12}}{V_{ABCD}}\end{array}\)

    \(\begin{array}{l} + )\,\,\dfrac{{{V_{M.ACPQ}}}}{{{V_{B.ACPQ}}}} = \dfrac{{MA}}{{BA}} = \dfrac{1}{2}\\\dfrac{{{V_{B.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{{{S_{ACPQ}}}}{{{S_{ACD}}}} = 1 - \dfrac{{{S_{PQD}}}}{{{S_{ACD}}}} = 1 - \dfrac{2}{3}.\dfrac{2}{3} = \dfrac{5}{9}\\ \Rightarrow \dfrac{{{V_{B.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{5}{9}\\ \Rightarrow \dfrac{{{V_{M.ACPQ}}}}{{{V_{B.ACD}}}} = \dfrac{1}{2}.\dfrac{5}{9} = \dfrac{5}{{18}}\\ \Rightarrow {V_{M.ACPQ}} = \dfrac{5}{{18}}{V_{B.ACD}} = \dfrac{5}{{18}}{V_{ABCD}}\end{array}\)

    \( \Rightarrow {V_{BMNPQD}} = {V_{ABCD}} - \left( {\dfrac{1}{{12}}{V_{ABCD}} + \dfrac{5}{{18}}{V_{ABCD}}} \right) = \dfrac{{23}}{{36}}{V_{ABCD}}\).

    Vì ABCD là tứ diện đều cạnh 1 nên \({V_{ABCD}} = \dfrac{{\sqrt 3 }}{{12}}\).

    Vậy \({V_{BMNPQD}} = \dfrac{{23}}{{36}}.\dfrac{{\sqrt 3 }}{{12}} = \dfrac{{23\sqrt 3 }}{{432}}\).

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com