Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) với \(SA = 2,\,\,BC = 2\). Một hình cầu bán kính 4 tiếp xúc với mặt phẳng

Câu hỏi số 673805:
Vận dụng cao

Cho hình chóp \(S.ABC\) với \(SA = 2,\,\,BC = 2\). Một hình cầu bán kính 4 tiếp xúc với mặt phẳng \(\left( {ABC} \right)\) tại \(C\), tiếp xúc với \(SA\) tại \(S\) và cắt \(SB\) tại điểm thứ hai \(D\) sao cho \(CD\) đi qua tâm của hình cầu. Tính thể tích hình chóp \(S.ABC\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:673805
Giải chi tiết

Gọi \(M\) là trung điểm của \(BC\)

Xét \(\Delta SOM\) và \(\Delta COM\) ta có:

\(\begin{array}{l}SO = CO\\OM\,\,chung\\MS = MC\\ \Rightarrow \Delta SOM = \Delta COM\,\,\left( {c.c.c} \right)\\ \Rightarrow \angle MSO = \angle MCO = {90^0}\\ \Rightarrow SM \bot SO\end{array}\)

Mà \(SA \bot SO \Rightarrow SO \bot \left( {SAM} \right) \Rightarrow SO \bot AM\)

Mà \(AM \bot OC \Rightarrow AM \bot \left( {OBC} \right) \Rightarrow AM \bot BC\)

Do đó \(\Delta ABC\) cân tại \(A\)

Ta có: \(\left\{ \begin{array}{l}SM = \dfrac{{BC}}{2} = 1\\AM = \sqrt {S{A^2} - S{M^2}}  = \sqrt 3 \end{array} \right.\)

Tam giác \(SCD\) nội tiếp trong mặt cầu nên \(\Delta SCD\) vuông tại \(S\)

Xét \(\Delta BCD\) có \(CS \bot BD\): \(CS = \dfrac{{BC.CD}}{{\sqrt {B{C^2} + C{D^2}} }} = \dfrac{{2.8}}{{\sqrt {{2^2} + {8^2}} }} = \dfrac{8}{{\sqrt {17} }}\)

Kẻ \(SH \bot BC\,\,\left( {H \in BC} \right)\)

Khi đó \(CH = \dfrac{{C{S^2}}}{{BC}} = \dfrac{{32}}{{17}} \Rightarrow SH = \sqrt {C{S^2} - C{H^2}}  = \dfrac{8}{{17}}\)

Vậy \({V_{SABC}} = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{8}{{17}}.\dfrac{1}{2}.\sqrt 3 .2 = \dfrac{{8\sqrt 3 }}{{51}}\)

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com