Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^2}\) có đồ thị \(\left( P \right)\)a) Vẽ đồ thị \(\left( P \right)\) trên mặt

Câu hỏi số 676624:
Vận dụng

Cho hàm số \(y = {x^2}\) có đồ thị \(\left( P \right)\)
a) Vẽ đồ thị \(\left( P \right)\) trên mặt phẳng tọa độ \(Oxy\).
b) Tìm giá trị nguyên của tham số \(m\) để đường thẳng \(\left( d \right):y = 2mx - {m^2} + 1\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ lần lượt là \({x_1},{x_2}\) thỏa mãn \({x_1} < 2024 < {x_2}\).

Quảng cáo

Câu hỏi:676624
Phương pháp giải

a) Cho 5 điểm và vẽ parabol (P).

b) Xét phương trình hoành độ giao điểm, từ đó áp dụng hệ thức vi-et \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} =  - \dfrac{b}{a}}\\{{x_1}{x_2} = \dfrac{c}{a}}\end{array}} \right.\)

Giải chi tiết

a) Ta có bảng giá trị sau:

\( \Rightarrow \) Đồ thị hàm số là đường cong parabol đi qua các điểm \(O\,\left( {0;0} \right);A\left( { - 2;4} \right);\,\,B\left( { - 1;1} \right);C\left( {1;1} \right);\,\,D\left( {2;4} \right)\)

Hệ số \(a = 1 > 0\)nên parabol có bề cong hướng lên. Đồ thị hàm số nhận Oy làm trục đối xứng.

Ta vẽ được đồ thị hàm số \(y = {x^2}\) như sau:

b) Xét phương trình hoành độ giao điểm của (P) và (d) ta được:

\({x^2} = 2mx - {m^2} + 1 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\) (1)

Ta có: \(\Delta ' = {m^2} - \left( {{m^2} - 1} \right) = 1 > 0\) \(\forall m\)

Suy ra phương trình có hai nghiệm phân biệt với mọi \(m.\)

Khi đó theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = {m^2} - 1\end{array} \right.\)

Từ giả thiết: \({x_1} < 2024 < {x_2} \Rightarrow \left\{ \begin{array}{l}{x_1} - 2024 < 0\\{x_2} - 2024 > 0\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \left( {{x_1} - 2024} \right)\left( {{x_2} - 2024} \right) < 0\\ \Leftrightarrow {x_1}{x_2} - 2024\left( {{x_1} + {x_2}} \right) + 4096576 < 0\end{array}\)

\(\begin{array}{l} \Rightarrow {m^2} - 1 - 2024.2m + 4096576 < 0\\ \Leftrightarrow {m^2} - 4048m + 4096575 < 0\\ \Leftrightarrow {m^2} - 2025m - 2023m + 4096575 < 0\\ \Leftrightarrow m\left( {m - 2025} \right) - 2023\left( {m - 2025} \right) < 0\\ \Leftrightarrow \left( {m - 2025} \right)\left( {m - 2023} \right) < 0\end{array}\)

TH1: \(\left\{ \begin{array}{l}m - 2025 > 0\\m - 2023 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 2025\\m < 2023\end{array} \right.\) (vô lí).

TH2: \(\left\{ \begin{array}{l}m - 2025 < 0\\m - 2023 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2025\\m > 2023\end{array} \right. \Leftrightarrow 2023 < m < 2025\).

Mà m là số nguyên nên \(m = 2024\).

Vậy \(m = 2024\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com