Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm số nguyên dương \(n\) nhỏ nhất sao cho các số \(n + 1,\,\,2n + 1,\,\,5n + 1\) đều là các số chính phương.

Câu 682036: Tìm số nguyên dương \(n\) nhỏ nhất sao cho các số \(n + 1,\,\,2n + 1,\,\,5n + 1\) đều là các số chính phương.

Câu hỏi : 682036
  • (0) bình luận (0) lời giải
    ** Viết lời giải để bạn bè cùng tham khảo ngay tại đây

    Giải chi tiết:

    Nếu \(n = 3k + 1\,\,\left( {k \in \mathbb{N}} \right)\) thì \(n + 1 = 3k + 2 \equiv 2\,\,\left( {\bmod 3} \right)\) (vô lí) vì \(n + 1\) là số chính phương

    Nếu \(n = 3k + 2\) thì \(2n + 1 = 6k + 5 \equiv 2\,\,\left( {\bmod 3} \right)\) (vô lí) vì \(2n + 1\) là số chính phương

    Do đó \(n \vdots 3\,\,\left( 1 \right)\)

    Vì \(2n + 1\) là số chính phương lẻ nên \(2n + 1 \equiv 1\,\,\left( {\bmod \,\,8} \right)\)

    \(\begin{array}{l} \Rightarrow 2n \vdots 8\\ \Rightarrow n \vdots 4\end{array}\)

    \( \Rightarrow n + 1\) lẻ

    Vì \(n + 1\) là số chính phương lẻ nên \(n + 1 \equiv 1\left( {\bmod 8} \right) \Rightarrow n \vdots 8\,\,\left( 2 \right)\)

    Từ (1), (2) và \(\left( {3,8} \right) = 1 \Rightarrow n \vdots 24\)

    Với \(n = 24 \Rightarrow \left\{ \begin{array}{l}n + 1 = 25 = {5^2}\\2n + 1 = 49 = {7^2}\\5n + 1 = 121 = {11^2}\end{array} \right.\)

    Vậy \(n = 24\) là giá trị \(n\) nhỏ nhất thỏa mãn.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com