Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giả sử \(p\) là số nguyên tố lẻ và \(m = \dfrac{{{9^p} - 1}}{8}\). Chứng minh rằng \(m\) là hợp số lẻ không chia hết cho 3 và \({3^{m - 1}} \equiv 1\,\,\left( {\bmod m} \right)\)

Câu 682048: Giả sử \(p\) là số nguyên tố lẻ và \(m = \dfrac{{{9^p} - 1}}{8}\). Chứng minh rằng \(m\) là hợp số lẻ không chia hết cho 3 và \({3^{m - 1}} \equiv 1\,\,\left( {\bmod m} \right)\)

Câu hỏi : 682048
  • (0) bình luận (0) lời giải
    ** Viết lời giải để bạn bè cùng tham khảo ngay tại đây

    Giải chi tiết:

    Ta có: \(m = \dfrac{{{9^p} - 1}}{8} = \dfrac{{{3^p} - 1}}{2}.\dfrac{{{3^p} + 1}}{4} = ab\) với \(a = \dfrac{{{3^p} - 1}}{2},\,\,b = \dfrac{{{3^p} + 1}}{4}\)

    Vì \(a,\,\,b\) là các số nguyên lớn hơn 1 nên \(m\) là hợp số

    Ta có: \(m = \dfrac{{{9^p} - 1}}{8} = {9^{p - 1}} + {9^{p - 2}} +  \ldots  + 9 + 1\) và \(p\) lẻ nên \(m\) lẻ

    Hơn nữa \(m \equiv 1\left( {\bmod 3} \right)\)

    Theo định lí Fermat nhỏ ta có \({9^p} - 9 \vdots p\)

    Mà \(\left( {p,8} \right) = 1 \Rightarrow {9^p} - 9 \vdots 8p\)

    Khi đó \(m - 1 = \dfrac{{{9^p} - 9}}{8} \vdots p\)

    Vì \(m - 1 \vdots 2 \Rightarrow m - 1 \vdots 2p\)

    Khi đó \({3^{m - 1}} - 1 \vdots {3^{2p}} - 1 \vdots \dfrac{{{9^p} - 1}}{8} = m\)

    Vậy \({3^{m - 1}} \equiv 1\left( {\bmod m} \right)\)

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3 bước: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com