Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x) = m{x^3} - (m + 2){x^2} + 2 - m\) với \(m\) là tham số thực. Nếu \({\min _{[1;3]}}f(x) =

Câu hỏi số 682298:
Vận dụng

Cho hàm số \(f(x) = m{x^3} - (m + 2){x^2} + 2 - m\) với \(m\) là tham số thực. Nếu \({\min _{[1;3]}}f(x) = f(2)\)  thì \({\max _{[1;2]}}f(x - 1)\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:682298
Phương pháp giải

Dùng hàm đặc trưng

Giải chi tiết

Do \({\min _{[1;3]}}f(x) = f(2)\) nên \(x = 2\) là cực trị của hàm \(f(x) = m{x^3} - (m + 2){x^2} + 2 - m\)

\(\begin{array}{l} \Rightarrow f'\left( 2 \right) = 0\\ \Leftrightarrow 3m{.2^2} - 2\left( {m + 2} \right).2 = 0\\ \Leftrightarrow 12m - 4m - 8 = 0\\ \Leftrightarrow m = 1\end{array}\)

Khi đó \(f(x) = {x^3} - 3{x^2} + 1\)

\(\begin{array}{l} \Rightarrow f(x - 1) = {\left( {x - 1} \right)^3} - 3{\left( {x - 1} \right)^2} + 1\\ \Rightarrow f'\left( {x - 1} \right) = 3{\left( {x - 1} \right)^2} - 6\left( {x - 1} \right)\\f'\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\\ \Rightarrow {\max _{[1;2]}}f(x - 1) = f\left( 1 \right) = 1\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com