Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC vuông tại đỉnh \(A\), có đường cao AH. Gọi \(M\) và \(N\) lần lượt là trung

Câu hỏi số 682650:
Vận dụng

Cho tam giác ABC vuông tại đỉnh \(A\), có đường cao AH. Gọi \(M\) và \(N\) lần lượt là trung điềm của BH và AH. Chứng minh rằng:

a) \(\Delta HAM\backsim\Delta HCN\).

b) \(AM \bot CN\).

Quảng cáo

Câu hỏi:682650
Phương pháp giải

Các trường hợp đồng dạng của tam giác vuông.

Giải chi tiết

a) Xét hai tam giác ABH vuông tại H và CAH vuông tại H có:

\(\angle {ABH} = {90^\circ } - \angle {BAH} = \angle {CAH}.\)

Suy ra  (hai góc nhọn bằng nhau).

Suy ra \(\frac{{BH}}{{AH}} = \frac{{AH}}{{CH}}\).

Xét hai tam giác HAM vuông tại H và HCN vuông tại H có:

\(\frac{{HM}}{{HN}} = \frac{{BH}}{{AH}} = \frac{{AH}}{{CH}}{\rm{ (cmt)}}{\rm{.}}\)

Suy ra \(\Delta HAM\backsim\Delta HCN\) (cặp cạnh góc vuông tỉ lệ).

b) Gọi \(O\) là giao điểm của AM và CN.

Xét hai tam giác NAO và NCH có:

\(\angle {ANO} = \angle {CNH}\) (hai góc đối đỉnh)

\(\angle {NAO} = \angle {HAM} = \angle {NCH}{\rm{ (}}\Delta HAM\backsim\Delta HCN{\rm{) }}\)

Suy ra \(\Delta NAO\backsim\Delta NCH\) (g.g).

Suy ra \(\angle {NOA} = \angle {NHC} = {90^\circ }\), hay \(AM \bot CN\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com