Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} - 3x - 4,\forall x \in \mathbb{R}\). Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(g\left( x \right) = f\left( { - {x^3} + 3{x^2} + m} \right)\) có đúng hai điểm cực trị thuộc khoảng \(\left( {1;4} \right)\) ?

Câu 683219: Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} - 3x - 4,\forall x \in \mathbb{R}\). Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(g\left( x \right) = f\left( { - {x^3} + 3{x^2} + m} \right)\) có đúng hai điểm cực trị thuộc khoảng \(\left( {1;4} \right)\) ?

A. 9

B. 7

C. 8

D. 10

Câu hỏi : 683219
  • Đáp án : A
    (0) bình luận (0) lời giải

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com