Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a \ne 0)\) có đường thẳng \(g(x) = mx + n\) là tiếp tuyến

Câu hỏi số 686179:
Vận dụng

Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a \ne 0)\) có đường thẳng \(g(x) = mx + n\) là tiếp tuyến của đồ thị tại điểm có hoành độ \(x =  - \dfrac{3}{2}\) và \(f(0) = f\left( { - \dfrac{3}{2}} \right)\) (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x),y = g(x)\) (phẩn được tô đậm trong hình vẽ).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:686179
Phương pháp giải

Từ điều kiện đề bài và đồ thị xác định a,b,c,d,m,n từ đó tìm tích phân.

Giải chi tiết

Đường thẳng \(g(x) = mx + n\) đi qua \(\left( { - \dfrac{3}{2},1} \right),\left( {2,\dfrac{9}{2}} \right) \Rightarrow g\left( x \right) = x + \dfrac{5}{2}\)

\( \Rightarrow g\left( x \right)\) có hệ số góc bằng 1

\( \Rightarrow f'\left( {\dfrac{{ - 3}}{2}} \right) = 1 \Leftrightarrow 3a{\left( {\dfrac{{ - 3}}{2}} \right)^2} + 2b\left( {\dfrac{{ - 3}}{2}} \right) + c = 1\)

\( \Leftrightarrow \dfrac{{27}}{4}a - 3b + c = 1\)  (1)

\(f(0) = f\left( { - \dfrac{3}{2}} \right) \Leftrightarrow d =  - \dfrac{{27}}{8}a + \dfrac{9}{4}b - \dfrac{3}{2}c + d\)

\( \Rightarrow \dfrac{{27}}{8}a - \dfrac{9}{4}b + \dfrac{3}{2}c = 0\) (2)

\(f\left( 2 \right) = \dfrac{9}{2} \Rightarrow 8a + 4b + 2c + d = \dfrac{9}{2}\)  (3)

\(g\left( { - \dfrac{3}{2}} \right) = 1 \Rightarrow f\left( 0 \right) = 1 \Rightarrow d = 1\)  (4)

Từ 1,2,3,4 ta được \(f\left( x \right) = \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{3} - \dfrac{x}{4} + 1\)

\( \Rightarrow S = \int\limits_{ - \dfrac{3}{2}}^2 {\left[ {x + \dfrac{5}{2} - \left( {\dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{3} - \dfrac{x}{4} + 1} \right)} \right]dx}  = \dfrac{{2401}}{{576}}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com