Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu m nguyên dương để hàm số \(y = {x^3} - 6{x^2} + mx\) đồng biến trên khoảng \(\left( { -

Câu hỏi số 686685:
Thông hiểu

Có bao nhiêu m nguyên dương để hàm số \(y = {x^3} - 6{x^2} + mx\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:686685
Phương pháp giải

Để hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( { - \infty ; + \infty } \right)\).

Sử dụng điều kiện có nghiệm đúng của bất phương trình: Để \(a{x^2} + bx + c \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

Ta có \(y' = 3{x^2} - 12x + m\).

Để hàm số đồng biến trên \(\left( { - \infty ; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( { - \infty ; + \infty } \right)\)

\(\begin{array}{l} \Leftrightarrow 3{x^2} - 12x + m \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}3 > 0\,\,\left( {luon\,\,dung} \right)\\\Delta ' = 36 - 3m \le 0 \Leftrightarrow m \ge 12\end{array} \right.\end{array}\)

Vậy có vô số giá trị m nguyên dương thoả mãn.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com