Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình chóp SABCD có đáy là hình vuông cạnh a, hai mặt phẳng (SAB) và (SBC) cùng vuông góc với

Câu hỏi số 686897:
Vận dụng

Cho hình chóp SABCD có đáy là hình vuông cạnh a, hai mặt phẳng (SAB) và (SBC) cùng vuông góc với mặt phẳng (ABCD) và \(SC = a\sqrt 5 \). Tính khoảng cách từ D đến mặt phẳng (SAC).

Quảng cáo

Câu hỏi:686897
Giải chi tiết

Kẻ \(BH \bot SO\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AC \bot SB}\\{AC \bot BD}\end{array} \Rightarrow AC \bot (SBD) \Rightarrow AC \bot BH} \right.\)

Ta lại có: \(BH \bot SO \Rightarrow BH \bot (SAC) \Rightarrow d(B,(SAC)) = BH\)

Ta có: \(SB = \sqrt {S{C^2} - B{C^2}}  = \sqrt {{{(a\sqrt 5 )}^2} - {a^2}}  = 2a\)

Ta có: \(BH = \dfrac{1}{{\sqrt {\dfrac{1}{{S{B^2}}} + \dfrac{1}{{O{B^2}}}} }}\)

Vậy \(d(B,(SAC)) = \dfrac{2}{3}a\).

Ta có: DB cắt \((SAC)\) tại \(O\)

\( \Rightarrow \dfrac{{d(D,(SAC))}}{{d(B,(SAC))}} = \dfrac{{DO}}{{BO}} = 1 \Rightarrow d(D,(SAC)) = d(B,(SAC)) = \dfrac{2}{3}a\).

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com