Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải các phương trình, hệ phương trình sau:а) \(2{x^2} + 5x + 2 = 0\);b) \(\left\{

Câu hỏi số 692128:
Thông hiểu

Giải các phương trình, hệ phương trình sau:

а) \(2{x^2} + 5x + 2 = 0\);

b) \(\left\{ {\begin{array}{*{20}{l}}{xy =  - 3}\\{3x + 3y + 2xy = 0}\end{array}} \right.\)

Quảng cáo

Câu hỏi:692128
Phương pháp giải

a) Tính \(\Delta \).

b) Giải hệ phương trình bằng phương pháp thế.

Giải chi tiết

a) Ta có: \(\Delta  = {5^2} - 4 \cdot 2 \cdot 2 = 9 = {3^2} > 0\) nên phương trình có 2 nghiệm:\({x_1} = \dfrac{{ - 5 + 3}}{{2.2}} =  - \dfrac{1}{2},{x_2} = \dfrac{{ - 5 - 3}}{{2.2}} =  - 2.\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { - \dfrac{1}{2}; - 2} \right\}\).

b) \(\left\{ {\begin{array}{*{20}{l}}{xy =  - 3{\rm{                  (1)}}}\\{3x + 3y + 2xy = 0{\rm{   (2)}}}\end{array}} \right.\)

Thế (1) vào (2) ta được: \(x + y = 2\). Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{xy =  - 3}\\{x + y = 2}\end{array}} \right.\)

Do đó \(x,y\) là nghiệm của phương trình \({X^2} - 2X - 3 = 0\).

Giải phương trình này ta được nghiệm: \({X_1} =  - 1;{X_2} = 3\).

Vậy hệ phương trình trên có hai cặp nghiệm: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1}\\{y = 3}\end{array}} \right.\) và \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y =  - 1}\end{array}} \right.\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com