Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm đa thức bậc ba \(f(x) = a{x^3} + b{x^2} + cx + 1\,\,(a \ne 0)\) biết \(f( - 1) =  - 2,\,\,f(1) =

Câu hỏi số 697459:
Vận dụng

Tìm đa thức bậc ba \(f(x) = a{x^3} + b{x^2} + cx + 1\,\,(a \ne 0)\) biết \(f( - 1) =  - 2,\,\,f(1) = 2,\,\,f(2) = 7\)

Quảng cáo

Câu hỏi:697459
Phương pháp giải

Tìm \(f( - 1) =  - 2,\,\,f(1) = 2,\,\,f(2) = 7\) từ đó ta có hệ phương trình bậc nhất ba ẩn \(a,b,c\).

Giải hệ phương trình và tìm \(a,b,c\).

Giải chi tiết

Ta có:

\(f( - 1) = a.{( - 1)^3} + b.{( - 1)^2} + c.( - 1) + 1 =  - 2 \Leftrightarrow  - a + b - c =  - 3\)

\(f(1) = a{.1^3} + b{.1^2} + c.1 + 1 = 2 \Leftrightarrow a + b + c = 1\)

\(f(2) = a{.2^3} + b{.2^2} + c.2 + 1 = 7 \Leftrightarrow 8a + 4b + 2c = 6 \Leftrightarrow 4a + 2b + c = 3\)

Ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{ - a + b - c =  - 3}\\{a + b + c = 1}\\{4a + 2b + c = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2b =  - 2}\\{ - 3a - b =  - 2}\\{4a + 2b + c = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b =  - 1}\\{ - 3a - ( - 1) =  - 2}\\{4a + 2b + c = 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b =  - 1}\\{a = 1}\\{c = 1}\end{array}} \right.\)

Vậy đa thức bậc ba là \(f(x) = {x^3} - {x^2} + x + 1\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com