Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho điểm \(I\left( { - 1;2;0} \right)\) và đường thẳng \(d:\dfrac{{x - 2}}{{ -

Câu hỏi số 701341:
Thông hiểu

Trong không gian \(Oxyz\), cho điểm \(I\left( { - 1;2;0} \right)\) và đường thẳng \(d:\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{1}\). Mặt cầu \(\left( S \right)\) có tâm \(I\) và tiếp xúc với đường thẳng \(d\) có phương trình là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:701341
Phương pháp giải

Tính khoảng cách từ \(I\) đến \(d\)

Giải chi tiết

Gọi \(M\left( {2;1;1} \right) \in d \Rightarrow \overrightarrow {IM}  = \left( {3; - 1;1} \right)\)

Khi đó \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {IM} } \right] = \left( { - 3; - 5;4} \right)\)

Khoảng cách từ \(I\) đến \(d\) là \(\dfrac{{\left| {\left[ {\overrightarrow {{u_d}} ,\overrightarrow {IM} } \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}} = \sqrt {\dfrac{{50}}{9}} \)

Phương trình mặt cầu cần tìm là \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = \dfrac{{50}}{9}\)

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com