Trong không gian cho các véc-tơ \(\vec a,\vec b,\vec c\) không đồng phẳng thỏa mãn \((x - y)\vec a + (y -
Trong không gian cho các véc-tơ \(\vec a,\vec b,\vec c\) không đồng phẳng thỏa mãn \((x - y)\vec a + (y - z)\vec b = \) \((x + z - 2)\vec c\). Tính \(T = x + y + z\).
Quảng cáo
Cho ba véctơ \(\vec a,\vec b,\vec c\), trong đó véctơ \(\vec a,\vec b\) không cùng phương. Điều kiện cần và đủ để ba véctơ \(\vec a\), \(\vec b,\vec c\) đồng phẳng là có các số m, n sao cho \(\vec c = m\vec a + \) \(n\vec b\). Hơn nữa các số m, n là duy nhất.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












