Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Không gian \(Oxyz\), cho \(\vec a = ( - 3;4;0),\vec b = (5;0;12)\). Côsin của góc giữa \(\vec

Câu hỏi số 708161:
Thông hiểu

Không gian \(Oxyz\), cho \(\vec a = ( - 3;4;0),\vec b = (5;0;12)\). Côsin của góc giữa \(\vec a\) và \(\vec b\) bằng (làm tròn đến số thập phân thứ hai).

Đáp án đúng là: -0,23

Quảng cáo

Câu hỏi:708161
Phương pháp giải

Trong không gian \(Oxyz\), cho \(\vec u = \left( {{x_1};{y_1};{z_1}} \right);\vec v = \left( {{x_2};{y_2};{z_2}} \right)\). Ta có:

\( + \cos (\vec u,\vec v) = \dfrac{{\vec u \cdot \vec v}}{{|\vec u| \cdot |\vec v|}} = \dfrac{{{x_1}{x_2} + {y_2}{y_2} + {z_1}{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2}  \cdot \sqrt {x_2^2 + y_2^2 + z_2^2} }}\)

Giải chi tiết

Ta có: \(\cos (\vec a;\vec b) = \dfrac{{\vec a \cdot \vec b}}{{|\vec a| \cdot |\vec b|}} = \dfrac{{ - 3.5 + 4.0 + 0.12}}{{\sqrt {{{( - 3)}^2} + {4^2} + {0^2}} \sqrt {{5^2} + {0^2} + {{12}^2}} }} = \dfrac{{ - 3}}{{13}} \approx  - 0,23\).

Đáp án cần điền là: -0,23

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com