Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho \(a,b,c\) là các số thực dương thỏa mãn \(a + b + c = 3\).

Chứng minh rằng: \(\sqrt[3]{{a\left( {b + 2c} \right)}} + \sqrt[3]{{b\left( {c + 2a} \right)}} + \sqrt[3]{{c\left( {a + 2b} \right)}} \le 3\sqrt[3]{3}\)

Câu 709373: Cho \(a,b,c\) là các số thực dương thỏa mãn \(a + b + c = 3\).

Chứng minh rằng: \(\sqrt[3]{{a\left( {b + 2c} \right)}} + \sqrt[3]{{b\left( {c + 2a} \right)}} + \sqrt[3]{{c\left( {a + 2b} \right)}} \le 3\sqrt[3]{3}\)

Câu hỏi : 709373

Quảng cáo

Phương pháp giải:

Sử dụng bất đẳng thức Cauchy \(a + b + c \ge 3\sqrt[3]{{abc}}\) để đánh giá VT của bất đẳng thức.

  • (0) bình luận (0) lời giải
    ** Viết lời giải để bạn bè cùng tham khảo ngay tại đây

    Giải chi tiết:

    Áp dụng bất đẳng thức Cauchy dạng \(\sqrt[3]{{xyz}} \le \dfrac{{x + y + z}}{3}\) cho các số thực dương ta được:

    \(\sqrt[3]{{a\left( {b + 2c} \right)}} = \sqrt[3]{{\dfrac{1}{9}}} \cdot \sqrt[3]{{3a \cdot \left( {b + 2c} \right) \cdot 3}} \le \sqrt[3]{{\dfrac{1}{9}}} \cdot \dfrac{{3a + b + 2c + 3}}{3}\)

    \(\sqrt[3]{{b\left( {c + 2a} \right)}} = \sqrt[3]{{\dfrac{1}{9}}} \cdot \sqrt[3]{{3b \cdot \left( {c + 2a} \right) \cdot 3}} \le \sqrt[3]{{\dfrac{1}{9}}} \cdot \dfrac{{3b + c + 2a + 3}}{3}\)

    \(\sqrt[3]{{c\left( {a + 2\;b} \right)}} = \sqrt[3]{{\dfrac{1}{9}}} \cdot \sqrt[3]{{3c \cdot \left( {a + 2b} \right) \cdot 3}} \le \sqrt[3]{{\dfrac{9}{4}}} \cdot \dfrac{{3c + a + 2b + 3}}{3}\)

    Suy ra \(\sqrt[3]{{a\left( {b + 2c} \right)}} + \sqrt[3]{{b\left( {c + 2a} \right)}} + \sqrt[3]{{c\left( {a + 2\;b} \right)}} \le \sqrt[3]{{\dfrac{1}{9}}} \cdot \dfrac{{6\left( {a + b + c} \right) + 9}}{3} = 3\sqrt[3]{3}\)

    Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi và chỉ khi \(a = b = c = 1\).

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com