Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = 6{x^3} - 21{x^2} + 20x + 1\) trên đoạn \(\left[ {1;4}

Câu hỏi số 710336:
Vận dụng

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = 6{x^3} - 21{x^2} + 20x + 1\) trên đoạn \(\left[ {1;4} \right]\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:710336
Giải chi tiết

\(\begin{array}{l}f\left( x \right) = 6{x^3} - 21{x^2} + 20x + 1\\ \Rightarrow f'\left( x \right) = 18{x^2} - 42x + 20 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3} \notin \left[ {1,4} \right]\\x = \dfrac{5}{3} \in \left[ {1,4} \right]\end{array} \right.\end{array}\)

Ta có \(f\left( 1 \right) = 6,f\left( 4 \right) = 129,f\left( {\dfrac{5}{3}} \right) = \dfrac{{34}}{9}\)

\( \Rightarrow {f_{\min }} = \dfrac{{34}}{9}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com