Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(A\), \(BC = 2a\), cạnh bên \(SA\) vuông góc

Câu hỏi số 711028:
Nhận biết

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(A\), \(BC = 2a\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và  bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:711028
Phương pháp giải

Góc giữa 2 mặt phẳng chính là góc được tạo bởi 2 đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

Giải chi tiết

\(\Delta SAB = \Delta SAC \Rightarrow SB = SC\) nên \(\Delta SBC\) cân tại \(S\)

Gọi \(M\) trung điểm \(BC\)

Khi đó \(\left\{ \begin{array}{l}AM \bot BC\\SM \bot BC\\\left( {SBC} \right) \cap \left( {ABC} \right) = BC\;\end{array} \right.\)\( \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right) = \widehat {SMA}\)

Ta có: \(AM = \dfrac{1}{2}BC = \dfrac{1}{2}.2a = a\) (do \(\Delta ABC\) vuông cân tại \(A\))

Xét \(\Delta SAM\) vuông tại \(A\) ta có: \(\tan \widehat {SAM} = \dfrac{{SA}}{{AM}} = \dfrac{{\sqrt 3 a}}{a} = \sqrt 3 \)

Suy ra \(\angle SMA = 60^\circ \)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com