Thép không gỉ Ferritic là họ thép hợp kim có chứa từ 12 đến 27 phần trăm crôm. Một nhà máy
Thép không gỉ Ferritic là họ thép hợp kim có chứa từ 12 đến 27 phần trăm crôm. Một nhà máy luyện thép hiện có sẵn một lượng hợp kim thép chứa \(10{\rm{\% }}\) crôm và một lượng hợp kim thép chứa \(30{\rm{\% }}\) crôm. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt.
a) Tính khối lượng hợp kim thép mỗi loại từ hai loại thép trên dùng để luyện được 500 tấn thép chứa \(16{\rm{\% }}\) crôm.
b) Nhà máy dự định luyện ra loại thép không gỉ Ferritic từ 100 tấn thép chứa \(10{\rm{\% }}\) crôm và \(x\) tấn thép chứa \(30{\rm{\% }}\) crôm. Hỏi \(x\) nằm trong khoảng nào?
Quảng cáo
a) Tính khối lượng hợp kim thép mỗi loại từ hai loại thép trên dùng để luyện được 500 tấn thép chứa \(16{\rm{\% }}\) crôm.
Gọi a là số tấn hợp kim thép chứa 10% crom cần dùng (a > 0)
Khi đó, 500 – a là số tấn hợp kim thép 30% cần dùng.
Ta có:
a.10% + (500 – a).30% = 500.16%
10a + (500 – a).30 = 500.16
a = 350 (TMĐK)
Vậy số hợp kim thép chứa 10% crom cần dùng là 350 tấn, số hợp kim thép chứa 30% cần dùng là 150 tấn.
b) Nhà máy dự định luyện ra loại thép không gỉ Ferritic từ 100 tấn thép chứa \(10{\rm{\% }}\) crôm và \(x\) tấn thép chứa \(30{\rm{\% }}\) crôm. Hỏi \(x\) nằm trong khoảng nào?
Ta có số crôm từ 100 tấn thép chứa \(10\% \) crôm là \(10\% .100 = 10\) (tấn)
Số crôm từ \(x\) tấn thép chứa \(30\% \) crom: \(0,3x\) (tấn)
Tổng số tấn thép là \(100 + x\) (tấn)
Phần trăm crôm có trong tổng số tấn thép nhà máy dự định luyện ra là: \(\dfrac{{10 + 0,3x}}{{100 + x}}.100\)
Theo đầu bài, thép không gỉ Ferritic có chứa từ 12 đến 27 phần trăm crôm, ta có:
\(\begin{array}{l}12 \le \dfrac{{10 + 0,3x}}{{100 + x}}.100 \le 27\\1200 + 12x \le 1000 + 30x \le 2700 + 27x\\\left\{ \begin{array}{l}1200 + 12x \le 1000 + 30x\\1000 + 30x \le 2700 + 27x\end{array} \right.\\\left\{ \begin{array}{l}18x \ge 200\\3x \le 1700\end{array} \right.\\\left\{ \begin{array}{l}x \ge \dfrac{{100}}{9}\\x \le \dfrac{{1700}}{3}\end{array} \right.\\\dfrac{{100}}{9} \le x \le \dfrac{{1700}}{3}\end{array}\)
Vậy x nằm trong khoảng từ \(\dfrac{{100}}{9}\) đến \(\dfrac{{1700}}{3}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com