Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm nguyên hàm của hàm số \(f(x)=\dfrac{\ln x}{x(2+\ln x)^2}\)

Câu hỏi số 727153:
Thông hiểu

Tìm nguyên hàm của hàm số \(f(x)=\dfrac{\ln x}{x(2+\ln x)^2}\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:727153
Giải chi tiết

Đặt \(t=\ln x \Rightarrow d t=\dfrac{1}{x} d x\)

Khi đó

\(\int \dfrac{\ln x d x}{x(2+\ln x)^2} & =\int \dfrac{t d t}{(t+2)^2}=\int \dfrac{t+2-2}{(t+2)^2} d t=\int\left[\dfrac{1}{t+2}-\dfrac{2}{(t+2)^2}\right] d t \\

& =\ln |t+2|+\dfrac{2}{t+2}+C=\ln |\ln x+2|+\dfrac{2}{\ln x+2}+C\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com