Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn

Câu hỏi số 733838:
Vận dụng
15 13 2300 15000 2205 7700

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\). Trong đó \(t\) tính bằng giờ \(\left( {0 \le t \le 15} \right)\), \(B'\left( t \right)\) được tính bằng khách/giờ. (Nguồn: A. Bigalke et al., Mathematik,Grundkurs ma-l, Cornelesen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.

a) Sau 3 giờ sẽ có  khách tham dự lễ hội?

b) Số lượng khách tham dự lễ hội lớn nhất là 

c) Tại thời điểm \(t = \)    thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?

Đáp án đúng là: 2300; 15000; 15

Quảng cáo

Câu hỏi:733838
Giải chi tiết

a) Ta có\(B\left( t \right)\) là một nguyên hàm của hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\).

Do đó \(B\left( t \right) = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt = 5{t^4} - 100{t^3} + 500{t^2} + C\).

Nên \(B\left( t \right) = 5{t^4} - 100{t^3} + 500{t^2} + C\).

Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B\left( 1 \right) = 405 + C = 500 \Rightarrow C = 95\).

Vậy \(B\left( t \right) = 5{t^4} - 100{t^3} + 500{t^2} + 95,{\rm{  }}0 \le t \le 15\).

Số lượng khách tham dự lễ hội sau 3 giờ là: \(B\left( 3 \right) = {5.3^4} - {100.3^3} + {500.3^2} + 95 = 2300\)(khách).

b) Giá trị lớn nhất của hàm số \(B\left( t \right)\) trên đoạn \(\left[ {0;15} \right]\). Ta có:

\(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t = 0 \Rightarrow \left[ \begin{array}{l}t = 0\\t = 5\\t = 10\end{array} \right.\).

Ta có: \(B\left( 0 \right) = 95;B\left( 5 \right) = 3220;B\left( {10} \right) = 95,B\left( {15} \right) = 28220\).

Vậy Số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ,

c) Ta tìm \(t\) để hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\)đạt giá trị lớn nhất trên đoạn \(\left[ {0;15} \right]\).

Ta có: \(B''\left( t \right) = 60{t^2} - 600t + 1000 = 0 \Rightarrow \left[ \begin{array}{l}t = \dfrac{{15 - 5\sqrt 3 }}{3}\\t = \dfrac{{15 + 5\sqrt 3 }}{3}\end{array} \right.\).

Ta có: \(B'\left( 0 \right) = 0;B'\left( {\dfrac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B'\left( {\dfrac{{15 + 5\sqrt 3 }}{3}} \right) \approx  - 962,25;B'\left( {15} \right) = 15000\).

Khi đó, giá trị lớn nhất của hàm số \(B'\left( t \right) = 20{t^3} - 300{t^2} + 1000t\)trên đoạn \(\left[ {0;15} \right]\) bằng 15000 tại \(t = 15\).

Vậy tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất tại thời điểm 15 giờ.

Đáp án cần chọn là: 2300; 15000; 15

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com