Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Parabol \(\left( P \right):y = a{x^2} + bx + c\) qua ba điểm \(A\left( {1;1} \right),B\left( {2; - 3}

Câu hỏi số 734616:
Thông hiểu

Parabol \(\left( P \right):y = a{x^2} + bx + c\) qua ba điểm \(A\left( {1;1} \right),B\left( {2; - 3} \right),C\left( {5; - 2} \right)\). Tính \(30a + 8b + 3c\).

Đáp án đúng là:

Quảng cáo

Câu hỏi:734616
Giải chi tiết

Parabol \(\left( P \right):y = a{x^2} + bx + c\) qua ba điểm \(A\left( {1;1} \right),B\left( {2; - 3} \right),C\left( {5; - 2} \right)\) nên ta có hệ phương trình:

\(\left\{ \begin{array}{l}a + b + c = 1\\4a + 2b + c =  - 3\\25a + 5b + c =  - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \dfrac{{13}}{{12}}\\b = \dfrac{{ - 29}}{4}\\c = \dfrac{{43}}{6}\end{array} \right.\)

\( \Rightarrow 30a + 8b + 3c =  - 4\)         

Đáp án cần điền là: -4

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com