Cho hình chóp \(S \cdot A B C D\), trong đó ABCD là một hình thang với
Cho hình chóp \(S \cdot A B C D\), trong đó ABCD là một hình thang với đáy AB và CD. Gọi I và J lần lượt là trung điểm của AD và BC; G là trọng tâm của tam giác SAB. Giao tuyến d của hai mặt phẳng \((S A B)\) và \((G I J)\). Biết d cắt SA tại M và cắt SB tại N. Tứ giác MNIJ là hình bình hành thì \(A B=k \cdot C D\). Khi đó \(k=\) ?
Đáp án đúng là: B
Quảng cáo
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













