Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tại ba đỉnh tam giác đều cạnh a = 6cm trong không khí có đặt ba điện

Câu hỏi số 758086:
Vận dụng

Tại ba đỉnh tam giác đều cạnh a = 6cm trong không khí có đặt ba điện tích \({q_{1\;}} = {6.10^{ - 9}}C;{q_{2\;}} = {q_{3\;}} =  - {8.10^{ - 9}}C\). Xác định lực tác dụng lên \({q_0}\; = {8.10^{ - 9}}C\) tại tâm tam giác (đơn vị: \({10^{ - 3}}N\), làm tròn kết quả đến chữ số hàng phần mười).

Đáp án đúng là:

Quảng cáo

Câu hỏi:758086
Phương pháp giải

Lực tương tác giữa hai điện tích: \({F_{12}} = \dfrac{{k.\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)

Hai điện tích cùng dấu thì đẩy nhau, hai điện tích trái dấu thì hút nhau.

Lực tổng hợp tác dụng lên điện tích điểm: \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} \)

Vẽ hình, sử dụng các kiến thức hình học để tính toán.

Giải chi tiết

Biểu diễn các lực tác dụng lên \({q_0}\) như hình vẽ:

Gọi H là chân đường cao kẻ từ A xuống BC. Ta có:

\(OA = \dfrac{2}{3}AH = \dfrac{2}{3}.\sqrt {A{B^2} - B{H^2}}  = \dfrac{2}{3}.\sqrt {{6^2} - {3^2}}  = 2\sqrt 3 cm\)

Ta thấy: \(\left\{ \begin{array}{l}\left| {{q_{1\;}}} \right| = {6.10^{ - 9}}C\\\left| {{q_{2\;}}} \right| = \left| {{q_{3\;}}} \right| = {8.10^{ - 9}}C\\OA = OB = OC = 2\sqrt 3 cm\end{array} \right. \Rightarrow {F_2} = {F_3}\)

Lực tổng hợp tác dụng lên \({q_0}\): \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} \)

Với: \(\left\{ \begin{array}{l}{F_1} = \dfrac{{k.\left| {{q_0}{q_1}} \right|}}{{O{A^2}}} = \dfrac{{{{9.10}^9}.\left| {{{6.10}^{ - 9}}{{.8.10}^{ - 9}}} \right|}}{{{{\left( {2\sqrt 3 {{.10}^{ - 2}}} \right)}^2}}} = 3,{6.10^{ - 4}}N\\{F_2} = {F_3} = \dfrac{{k.\left| {{q_0}{q_2}} \right|}}{{O{B^2}}} = \dfrac{{{{9.10}^9}.\left| {{{8.10}^{ - 9}}.\left( { - {{8.10}^{ - 9}}} \right)} \right|}}{{{{\left( {2\sqrt 3 {{.10}^{ - 2}}} \right)}^2}}} = 4,{8.10^{ - 4}}N\end{array} \right.\)

Ta có: \(\overrightarrow {{F_{23}}}  = \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} \)

Từ hình vẽ ta thấy hình bình hành tạo bởi \(\overrightarrow {{F_2}} \) và \(\overrightarrow {{F_3}} \) là hình thoi và \(\left( {\overrightarrow {{F_2}} ;\overrightarrow {{F_3}} } \right) = {60^0}\)

\( \Rightarrow {F_{23}} = 2{F_2}.cos60 = {F_2} = \dfrac{{k.\left| {{q_0}{q_2}} \right|}}{{O{B^2}}} = 4,{8.10^{ - 4}}N\)

Ta có: \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_{23}}} \)

Mà \(\overrightarrow {{F_1}}  \uparrow  \uparrow \overrightarrow {{F_{23}}}  \Rightarrow F = {F_1} + {F_{23}}\)

\(F = 3,{6.10^{ - 4}} + 4,{8.10^{ - 4}} = 8,{4.10^{ - 4}}\,\,N = 840\,\,\left( {\mu N} \right)\)

Đáp số: 840

Đáp án cần điền là: 840

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com