Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; - 3;2} \right)\) và \(B\left( { - 2;1; - 4} \right)\). Xét

Câu hỏi số 768037:
Vận dụng

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; - 3;2} \right)\) và \(B\left( { - 2;1; - 4} \right)\). Xét hai điểm \(M\) và \(N\) thay đổi thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(MN = 4\). Giá trị lớn nhất của \(\left| {AM - BN} \right|\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:768037
Phương pháp giải

Sử dụng bất đẳng thức

Giải chi tiết

Dễ thấy hai điểm \(A,\,\,B\) nằm khác phía so với mặt phẳng \(\left( {Oxy} \right)\).

Gọi \({A_1}\) là điểm đối xứng của \(A\) qua mặt phẳng \(\left( {Oxy} \right)\) suy ra \({A_1}\left( {1; - 3; - 2} \right)\).

Gọi mặt phẳng \(\left( P \right)\) chứa \({A_1}\) và song song mặt phẳng \(\left( {Oxy} \right)\) suy ra \(\left( P \right):z =  - 2\).

Ta gọi \({A_2}:\overrightarrow {{A_1}{A_2}}  = \overrightarrow {MN} \) và gọi \(K\) là hình chiếu của \(B\) lên \(\left( P \right) \Rightarrow K\left( { - 2;1; - 2} \right) \Rightarrow BK = 2,K{A_1} = 5\)

Khi đó: \(\left| {AM - BN} \right| = \left| {{A_2}N - BN} \right| \le {A_2}B \le \sqrt {B{K^2} + {{(K{A_1} + 4)}^2}}  = \sqrt {85} \).

Suy ra giá trị lớn nhất của \(\left| {AM - BN} \right|\) bằng \(\sqrt {85} \), dấu bằng xảy ra khi \(N = {A_2}B \cap \left( {Oxy} \right)\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com