Một chất điểm $A$ xuất phát từ $O$, chuyển động thẳng với vận tốc biến thiên theo thời
Một chất điểm $A$ xuất phát từ $O$, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v(t) = \dfrac{1}{100}t^{2} + \dfrac{13}{30}t\left( \text{m/s} \right)$, trong đó $t$ (giây) là khoảng thời gian tính từ lúc $A$ bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm $B$ cũng xuất phát từ $O$, chuyển động thẳng cùng hướng với $A$ nhưng chậm hơn $10$ giây so với $A$ và có gia tốc bằng $a\left( \text{m/s}^{2} \right)$ ($a$ là hằng số). Sau khi $B$ xuất phát được $15$ giây thì đuổi kịp $A$. Vận tốc của $B$ tại thời điểm đuổi kịp $A$ bằng
Đáp án đúng là: D
Quảng cáo
Sử dụng tích phân tính quãng đường
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












