Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.

Câu hỏi số 803947:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,K\) lần lượt là trung điểm của \(BC\) và \(CD\). Gọi \(M\) là trung điểm của \(SB\). Gọi \(F\) là giao điểm của \(DM\) và \((SIK)\). Tính tỉ số \(\dfrac{{MF}}{{MD}}\).

Đáp án đúng là:

Quảng cáo

Câu hỏi:803947
Phương pháp giải

Chứng minh \((SIK) \cap (SBD) = Sx,({\rm{ }}Sx{\rm{//}}BD{\rm{//}}IK)\). Suy ra \(SF{\rm{//}}BD\).

Sau đó áp dụng định lý Thales tính tỉ số.

Giải chi tiết

-Ta có \(S \in (SIK) \cap (SAC)\).

Trong mặt phẳng \((ABCD)\), gọi \(E = IK \cap AC \Rightarrow \left\{ {\begin{array}{*{20}{l}}{E \in IK \subset (SIK)}\\{E \in AC \subset (SAC)}\end{array} \Rightarrow E \in (SIK) \cap (SAC)} \right.\).

Suy ra \(SE = (SIK) \cap (SAC)\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{S \in (SIK) \cap (SBD)}\\{BD \subset (SBD),IK \subset (SIK) \Rightarrow (SIK) \cap (SBD) = Sx,({\rm{ }}Sx{\rm{//}}BD{\rm{//}}IK){\rm{. }}}\\{BD{\rm{//}}IK}\end{array}} \right.\)

-Trong mặt phẳng \((SBD)\), gọi \(F = Sx \cap DM \Rightarrow \left\{ {\begin{array}{*{20}{l}}{S \in DM}\\{S \in Sx \subset (SIK)}\end{array} \Rightarrow F = DM \cap (SIK)} \right.\).

Ta có \(SF{\rm{//}}BD \Rightarrow \dfrac{{MF}}{{MD}} = \dfrac{{MS}}{{MB}} = 1\).

Đáp án cần điền là: 1

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com