Một nhà máy sản xuất $x$ sản phẩm trong mỗi tháng. Chi phí sản xuất $x$ sản phẩm được cho
Một nhà máy sản xuất $x$ sản phẩm trong mỗi tháng. Chi phí sản xuất $x$ sản phẩm được cho bởi hàm chi phí $C(x) = 16000 + 500x - 1,6x^{2} + 0,004x^{3}$ (nghìn đồng). Biết giá bán của mỗi sản phẩm là một hàm số phụ thuộc vào số lượng sản phẩm $x$ và được cho bởi công thức $p(x) = 1700 - 7x$ (nghìn đồng). Hỏi mỗi tháng nhà máy nên sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất? Biết rằng kết quả khảo sát thị trường cho thấy sản phẩm sản xuất ra sẽ tiêu thụ hết.
Đáp án đúng là: 100
Quảng cáo
Ứng dụng thực tế liên quan đến giá trị lớn nhất – giá trị nhỏ nhất của hàm số
Đáp án cần điền là: 100
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













