Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương

Câu hỏi số 824497:
Vận dụng

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).

Đáp án đúng là: 0

Quảng cáo

Câu hỏi:824497
Phương pháp giải

Biến đổi phương trình đã cho về dạng \(f\left( u \right) = f\left( v \right)\) rồi sử dụng phương pháp hàm số.

Giải chi tiết

Ta có:

\({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}} \Leftrightarrow {x^9} + 3{x^3} = 9x + m + 3\sqrt[3]{{9x + m}} \\ \Leftrightarrow {\left( {{x^3}} \right)^3} + 3{x^3} = {\left( {\sqrt[3]{{9x + m}}} \right)^3} + 3\sqrt[3]{{9x + m}}\)

Xét hàm \(g\left( t \right) = {t^3} + 3t \Rightarrow g'\left( t \right) = 3{t^2} + 3 > 0,\forall t\) nên hàm số \(g\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Suy ra \(g\left( {{x^3}} \right) = g\left( {\sqrt[3]{{9x + m}}} \right) \Leftrightarrow {x^3} = \sqrt[3]{{9x + m}} \Leftrightarrow {x^9} = 9x + m \Leftrightarrow {x^9} - 9x = m\).

Xét hàm \(f\left( x \right) = {x^9} - 9x\) trên \(\mathbb{R}\) có \(f'\left( x \right) = 9{x^8} - 9 = 0 \Leftrightarrow x =  \pm 1\).

Bảng biến thiên:

Từ bảng biến thiên ta thấy, phương trình đã cho có đúng hai nghiệm \( \Leftrightarrow \left[ \begin{array}{l}m = 8\\m =  - 8\end{array} \right.\).

Vậy \(S = \left\{ { - 8;8} \right\}\) hay tổng các phần tử của \(S\) bằng \(0\).

Đáp án cần điền là: 0

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com