Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho parabol $(P):y = x^{2} - 2x + m - 1$. Có bao nhiêu các giá trị nguyên của m để parabol cắt Ox tại

Câu hỏi số 833764:
Vận dụng

Cho parabol $(P):y = x^{2} - 2x + m - 1$. Có bao nhiêu các giá trị nguyên của m để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương.

Đáp án đúng là:

Quảng cáo

Câu hỏi:833764
Phương pháp giải

Lập phương trình hoành độ giao điểm: Cho $y = 0$ để có phương trình bậc hai.

Để phương trình có hai nghiệm phân biệt dương, cần thỏa mãn 3 điều kiện:

+) $\Delta > 0$ (hoặc $\Delta' > 0$) để có hai nghiệm phân biệt.

+) $S > 0$ (tổng hai nghiệm dương).

+) $P > 0$ (tích hai nghiệm dương).

Giải hệ các bất phương trình để tìm khoảng giá trị của $m$.

Đếm số giá trị nguyên của $m$ trong khoảng tìm được.

Giải chi tiết

Phương trình hoành độ giao điểm của $(P)$ và trục Ox là $x^{2} - 2x + m - 1 = 0$ (1)

Để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương khi và chi khi (1) có hai nghiệm phân biệt dương

$\left. \Leftrightarrow\left\{ \begin{array}{l} {\Delta = 2 - m > 0} \\ {S = 2 > 0} \\ {P = m - 1 > 0} \end{array} \right.\Leftrightarrow\left\{ \begin{array}{l} {m < 2} \\ {m > 1} \end{array}\Leftrightarrow 1 < m < 2 \right. \right.$.

Vậy không có số nguyên nào của m thoả mãn đề bài.

Đáp án cần điền là: 0

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com