Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho hai điểm \(A(-3 ; 2 ; 1)\) và \(B(5 ;-4 ; 1)\). Gọi \(M\) là

Câu hỏi số 862524:
Thông hiểu

Trong không gian \(Oxyz\), cho hai điểm \(A(-3 ; 2 ; 1)\) và \(B(5 ;-4 ; 1)\). Gọi \(M\) là hình chiếu vuông góc của \(A\) trên \((O x y)\), và \(N\) là điểm đối xứng với \(B\) qua \((O y z)\). Chọn các khẳng định đúng

Đáp án đúng là: B; C

Quảng cáo

Câu hỏi:862524
Phương pháp giải

Mặt phẳng $A\left( {x - x_{0}} \right) + B\left( {y - y_{0}} \right) + C\left( {z - z_{0}} \right) = 0$ đi qua điểm $M_{0}\left( {x_{0};y_{0};z_{0}} \right)$ và nhận vectơ $\overset{\rightarrow}{n}(A;B;C)$ khác $\overset{\rightarrow}{0}$ là VTPT.

Mặt phẳng trung trực AB qua trung điểm AB và nhận $\overrightarrow {AB}$ là VTPT

Giải chi tiết

\(M\) là hình chiếu của \(A(-3 ; 2 ; 1)\) trên trục \((O x y)\) nên ta có \(M(-3 ; 2 ; 0)\), nên a) Sai.

\(N\) là đối xứng với \(B(5 ;-4 ; 1)\) qua \((O y z)\) nên ta có \(N(-5 ;-4 ; 1)\).

Gọi \(I\) là trung điểm \(MN\). Ta có \(I\left(-4 ;-1 ; \dfrac{1}{2}\right)\).

Phương trình mặt phẳng trung trực của \(MN\): \(2(x+4)+6(y+1)-1\left(z-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow 4 x+12 y-2z+29=0\).

Vậy b, c Đúng

Đáp án cần chọn là: B; C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com