Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Từ 5 chữ số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau,

Câu hỏi số 154482:
Vận dụng

Từ 5 chữ số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó có bao nhiêu số lẻ, bao nhiêu số không chia hết cho 5?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:154482
Giải chi tiết

+) Ta có: P5 = 5! = 120 số tự nhiên có 5 chữ số khác nhau

+) Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số tự nhiên lẻ có 5 chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5. Để số cần tìm là số lẻ thì

Khi đó a5 \epsilon {1; 3; 5} nên có 3 cách chọn, 4 số còn lại có 4! Cách chọn

Vậy có: 3.4! = 72 số tự nhiên lẻ có 5 chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5

+) Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số tự nhiên chia hết cho 5 có 5 chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5

Khi đó a5 = 5 nên có 1 cách chọn, 4 số còn lại có 4! Cách chọn.

Vậy có 1.4! = 24 số tự nhiên chia hết cho 5 có 5 chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5

Như vậy có 120 - 24 = 96 số tự nhiên có 5 chữ số không chia hết cho 5

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com