Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định tập nghiệm S của bất phương trình \(\ln {x^2} > \ln \left( {4x - 4} \right)\)?

Câu hỏi số 176501:
Thông hiểu

Xác định tập nghiệm S của bất phương trình \(\ln {x^2} > \ln \left( {4x - 4} \right)\)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:176501
Phương pháp giải

Giải bất phương trình để tìm tập nghiệm. Chú ý điều kiện xác định hàm logarit. (Chú ý e > 1).

Giải chi tiết

Điều kiện: \(4x - 4 > 0 \Leftrightarrow x > 1.\)

\(\eqalign{  & \ln {x^2} > \ln \left( {4x - 4} \right) \Leftrightarrow {x^2} > 4x - 4 \Leftrightarrow {(x - 2)^2} > 0 \Leftrightarrow x \ne 2  \cr   &  \Rightarrow S = \left( {1; + \infty } \right)\backslash \left\{ 2 \right\}. \cr} \)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com