Cho hình chóp S.ABC có đáy là tam giác đều cạnh \(a\sqrt 2 \), I là trung điểm của BC. Hình chiếu
Cho hình chóp S.ABC có đáy là tam giác đều cạnh \(a\sqrt 2 \), I là trung điểm của BC. Hình chiếu vuông góc của S lên (ABC) là điểm H thuộc cạnh AI sao cho \(\overrightarrow {IH} + 2\overrightarrow {AH} = \overrightarrow 0 \) và \(SH = 2a\). Tan góc giữa hai mặt phẳng (SBC) và (ABC) là?
Đáp án đúng là: A
Quảng cáo
+) Xác định vị trí của điểm H.
+) Dựa vào phương pháp xác định góc giữa hai mặt phẳng để xác định góc giữa hai mặt phẳng (SBC) và (ABC).
+) Sử dụng hàm tan tính tan của góc vừa xác định được.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













