Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho biểu thức \(P = \left( {1 + \frac{{\sqrt x }}{{x + 1}}} \right):\left( {\frac{1}{{\sqrt x  - 1}} -

Câu hỏi số 206163:
Vận dụng cao

Cho biểu thức \(P = \left( {1 + \frac{{\sqrt x }}{{x + 1}}} \right):\left( {\frac{1}{{\sqrt x  - 1}} - \frac{{2\sqrt x }}{{x\sqrt x  + \sqrt x  - x - 1}}} \right) - 1.\)

a) Tìm điều kiện của \(x\) để \(P\) có nghĩa và rút gọn \(P.\)

b) Tìm các giá trị \(x \in \mathbb{Z}\) để biểu thức \(Q = P - \sqrt x \) nhận giá trị nguyên.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:206163
Phương pháp giải

a) Tìm điều kiện để biểu thức xác định.

Quy đồng mẫu, biến đổi và rút gọn biểu thức.

b) Biến đổi biểu thức \(Q = P - \sqrt x \)  về dạng \(a + \frac{b}{{MS}}\) với \(a,\,\,b \in \mathbb{Z}.\)

Từ đó, biểu thức \(Q \in \mathbb{Z} \Leftrightarrow b\,\, \vdots \,\,\,MS \Leftrightarrow MS \in U\left( b \right) \Rightarrow x = ...\)

Đối chiếu với điều kiện của \(x\) rồi kết luận.

Giải chi tiết

a) Tìm điều kiện của \(x\) để \(P\) có nghĩa và rút gọn \(P.\)

ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\\sqrt x  - 1 \ne 0\\x\sqrt x  + \sqrt x  - x - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 1\\\left( {x + 1} \right)\left( {\sqrt x  - 1} \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 1\end{array} \right..\)

\(\begin{array}{l}P = \left( {1 + \frac{{\sqrt x }}{{x + 1}}} \right):\left( {\frac{1}{{\sqrt x  - 1}} - \frac{{2\sqrt x }}{{x\sqrt x  + \sqrt x  - x - 1}}} \right) - 1\\ = \frac{{x + 1 + \sqrt x }}{{x + 1}}:\left( {\frac{1}{{\sqrt x  - 1}} - \frac{{2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x  - 1} \right)}}} \right) - 1\\ = \frac{{x + \sqrt x  + 1}}{{x + 1}}:\frac{{x + 1 - 2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x  - 1} \right)}} - 1\\ = \frac{{x + \sqrt x  + 1}}{{x + 1}}.\frac{{\left( {x + 1} \right)\left( {\sqrt x  - 1} \right)}}{{{{\left( {\sqrt x  - 1} \right)}^2}}} - 1\\ = \frac{{x + \sqrt x  + 1}}{{\sqrt x  - 1}} - 1 = \frac{{x + \sqrt x  + 1 - \sqrt x  + 1}}{{\sqrt x  - 1}}\\ = \frac{{x + 2}}{{\sqrt x  - 1}}.\end{array}\)

b) Tìm các giá trị \(x \in \mathbb{Z}\) để biểu thức \(Q = P - \sqrt x \) nhận giá trị nguyên.

Điều kiện \(x \ge 0,x \ne 1\)

 Ta có: \(Q = P - \sqrt x  = \frac{{x + 2}}{{\sqrt x  - 1}} - \sqrt x  = \frac{{x + 2 - \sqrt x \left( {\sqrt x  - 1} \right)}}{{\sqrt x  - 1}} = \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}} = \frac{{\sqrt x  - 1 + 3}}{{\sqrt x  - 1}} = 1 + \frac{3}{{\sqrt x  - 1}}.\)

\(\begin{array}{l} \Rightarrow Q \in Z \Leftrightarrow \left( {1 + \frac{3}{{\sqrt x  - 1}}} \right) \in Z \Leftrightarrow \frac{3}{{\sqrt x  - 1}} \in Z\\ \Leftrightarrow \left( {\sqrt x  - 1} \right) \in U\left( 3 \right) \Leftrightarrow \left( {\sqrt x  - 1} \right) \in \left\{ { \pm 1;\, \pm 3} \right\}\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt x  - 1 =  - 3\\\sqrt x  - 1 =  - 1\\\sqrt x  - 1 = 1\\\sqrt x  - 1 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt x  =  - 2\,\left( {ktm} \right)\\\sqrt x  = 0\\\sqrt x  = 2\\\sqrt x  = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( {tm} \right)\\x = 4\,\,\,\,\left( {tm} \right)\\x = 16\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy với \(x = 0,\,\,x = 4\)  hoặc \(x = 16\) thì \(Q = P - \sqrt x \) nguyên.

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com