Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một nguyên hàm của hàm số \(f\left( x \right) = {1 \over {\sqrt {4 - {x^2}} }}\) là 

Câu hỏi số 209457:
Vận dụng

Một nguyên hàm của hàm số \(f\left( x \right) = {1 \over {\sqrt {4 - {x^2}} }}\) là 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:209457
Giải chi tiết

Hướng dẫn giải chi tiết

Đặt \(x = 2\sin t \Leftrightarrow {\rm{d}}x = 2\cos t\,{\rm{d}}t\) và \(4 - {x^2} = 4\left( {1 - {{\sin }^2}t} \right) = 4{\cos ^2}t\)

Khi đó \(\int {{{{\rm{d}}x} \over {\sqrt {4 - {x^2}} }} = } \int {{{2\cos t} \over {\sqrt {4{{\cos }^2}t} }}{\rm{d}}t}  = \int {{{2\cos t} \over {2\cos t}}{\rm{d}}t}  = \int {{\rm{d}}t}  = t + C = \arcsin {x \over 2} + C.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com