Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O, tam giác SBD cân tại S. Gọi M là điểm tùy ý
Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O, tam giác SBD cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BD cắt SO, SB, AB tại N, P, Q. Tứ giác MNPQ là hình gì?
Đáp án đúng là: C
Quảng cáo
- Dựa vào tính chất: Nếu hai mặt phẳng \(\left( \alpha \right) \) và \(\left( \beta \right)\) có điểm chung M và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng đi qua M và song song với d và d’ để xác định thiết diện của hình chóp.
- Sử dụng các tính chất về đường cao, đường trung tuyến trong tam giác cân.
- Vận dụng các dấu hiệu nhận biết hình bình hành và hình chữ nhật.
Rất nhiều học sinh sau khi chứng minh được thiết diện là hình bình hành sẽ chọn luôn đáp án hình bình hành mà không để ý xem hình bình hành có điều gì đặc biệt để có thể “tiến hóa” thành một hình khác.
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













