Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và \(\left(
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và \(\left( \alpha \right)\) là mặt phẳng chứa AM và song song với BD. Gọi E và F lần lượt là giao điểm của \(\left( \alpha \right)\) với các cạnh SB, SD, gọi I là giao điểm của ME và BC, J là giao điểm của MF và CD. Nhận xét gì về ba điểm I, J, A?
Đáp án đúng là: A
Quảng cáo
- Dựa vào tính chất: Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) có điểm chung M và lần lượt chứa hai đường thẳng song song d và d’ thì giao tuyến của \(\left( \alpha \right)\( và \(\left( \beta \right)\) là đường thẳng đi qua M và song song với d và d’ để xác định thiết diện của hình chóp.
- Các điểm cùng thuộc 2 mặt phẳng thì sẽ thuộc vào giao tuyến của hai mặt phẳng đó. Do đó chúng thẳng hàng.
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













