Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD có AB = a, CD = b, \(AB \bot CD\). Gọi I và J lần lượt là trung điểm của AB và CD.

Câu hỏi số 212549:
Vận dụng

Cho tứ diện ABCD có AB = a, CD = b, \(AB \bot CD\). Gọi I và J lần lượt là trung điểm của AB và CD. Mặt phẳng \(\left( \alpha  \right)\) qua M nằm trên đoạn IJ và song song với AB và CD. Giao tuyến của mặt phẳng \(\left( \alpha  \right)\) và hình chóp có diện tích bằng bao nhiêu, biết IJ = 3IM.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:212549
Phương pháp giải

- Đưa về cùng mặt phẳng.

- Dựng thiết diện dựa vào các yếu tố song song có trong giả thiết.

- Chứng minh thiết diện là hình chữ nhật giao đó tính diện tích hình chữ nhật đó.

Giải chi tiết

Ta có: \(\left\{ \matrix{  M \in \left( \alpha  \right) \cap \left( {ICD} \right) \hfill \cr   CD\parallel \left( \alpha  \right) \hfill \cr   CD \subset \left( {ICD} \right) \hfill \cr}  \right.\)suy ra giao tuyến của \(\left( \alpha  \right)\) và (ICD) là đường thẳng qua M và song song với CD cắt IC tại L và cắt ID tại N.

Tương tự \(\left\{ \matrix{  M \in \left( \alpha  \right) \cap \left( {JAB} \right) \hfill \cr   AB\parallel \left( \alpha  \right) \hfill \cr   AB \subset \left( {JAB} \right) \hfill \cr}  \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) và (JAB) là đường thẳng qua M và song song AB cắt

JA tại P và cắt JB tại Q.

Ta có: \(\left\{ \matrix{  L \in \left( \alpha  \right) \cap \left( {ABC} \right) \hfill \cr   AB\parallel \left( \alpha  \right) \hfill \cr   AB \subset \left( {ABC} \right) \hfill \cr}  \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) với (ABC) là đường thẳng qua L song song với AB cắt BC tại E và cắt AC tại F. Do đó EF // AB (1).

Tương tự \(\left\{ \matrix{  N \in \left( \alpha  \right) \cap \left( {ABD} \right) \hfill \cr   AB\parallel \left( \alpha  \right) \hfill \cr   AB \subset \left( {ABD} \right) \hfill \cr}  \right.\) suy ra giao tuyến của \(\left( \alpha  \right)\) và (ABD) là đường thẳng qua N song song với AB cắt BD tại H và cắt AD tại G.

Do đó HG // AB (2).

Từ (1) và (2) suy ra EF // HG // AB (*)

Ta có: \(\left\{ \matrix{  FG = \left( \alpha  \right) \cap \left( {ACD} \right) \hfill \cr   CD\parallel \left( \alpha  \right) \hfill \cr   CD \subset \left( {ACD} \right) \hfill \cr}  \right. \Rightarrow FG\parallel CD\,\,\,\left( 3 \right)\).

Tương tự \(\left\{ \matrix{  EH = \left( \alpha  \right) \cap \left( {BCD} \right) \hfill \cr   CD\parallel \left( \alpha  \right) \hfill \cr   CD \subset \left( {BCD} \right) \hfill \cr}  \right. \Rightarrow EH\parallel CD\,\,\left( 4 \right).\)

Từ (*) và (**) suy ra EFGH là hình bình hành.

Mà \(AB \bot CD \Rightarrow EF \bot FG.\) Vậy thiết diện EFGH là hình chữ nhật

\( \Rightarrow {S_{EFGH}} = EF.FG = PQ.LN.\)

Trong tam giác JAB, ta có \({{PQ} \over {AB}} = {{JM} \over {JI}} = {2 \over 3} \Rightarrow PQ = {{2AB} \over 3} = {{2a} \over 3}.\)

Trong tam giác ICD ta có \({{LN} \over {CD}} = {{IM} \over {IJ}} = {1 \over 3} \Rightarrow LN = {{CD} \over 3} = {b \over 3}.\)

Vậy diện tích thiết diện là: \({S_{EFGH}} = {{2a} \over 3}.{b \over 3} = {{2ab} \over 9}.\)

Chọn B.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com